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In this paper, the results of experiments on unsteady disturbances in the boundary- 
layer flow over a disk rotating in otherwise still air are presented. The flow was 
perturbed impulsively at a point corresponding to a Reynolds number R below the 
value at which transition from laminar to turbulent flow is observed. Among the 
frequencies excited are convectively unstable modes, which form a three-dimensional 
wave packet that initially convects away from the source. The wave packet consists of 
two families of travelling convectively unstable waves that propagate together as one 
packet. These two families are predicted by linear-stability theory : branch-2 modes 
dominate close to the source but, as the packet moves outwards into regions with 
higher Reynolds numbers, branch- 1 modes grow preferentially and this behaviour 
was found in the experiment. However, the radial propagation of the trailing edge 
of the wave packet was observed to tend towards zero as it approaches the critical 
Reynolds number (about 510) for the onset of radial absolute instability. The wave 
packet remains convectively unstable in the circumferential direction up to this critical 
Reynolds number, but it is suggested that the accumulation of energy at a well-defined 
radius, due to the flow becoming radially absolutely unstable, causes the onset of 
laminar-turbulent transition. The onset of transition has been consistently observed 
by previous authors at an average value of 513, with only a small scatter around this 
value. Here, transition is also observed at about this average value, with and without 
artificial excitation of the boundary layer. This lack of sensitivity to the exact form of 
the disturbance environment is characteristic of an absolutely unstable flow, because 
absolute growth of disturbances can start from either noise or artificial sources to 
reach the same final state, which is determined by nonlinear effects. 

1. Introduction 
This paper presents results from an experimental study of the stability of the 

laminar boundary-layer flow over a rotating disk. The rotating-disk boundary layer is 
similar to that over a swept wing; both boundary layers are three-dimensional with a 
laminar velocity component that is inflectional. Hence, both flows are susceptible to 
inviscid crossflow instability. This form of instability was first noticed experimentally 
by Gray (1952) in the flow over a swept wing. His visualization experiments showed 
that transition occurs at much lower Reynolds numbers on swept wings than unswept 
wings and that, before transition, the surface of the wing is covered with a stationary 
striped pattern lying in the streamwise direction, which was explained as a series 
of stationary vortices in the boundary layer. The classic paper by Gregory, Stuart 



374 R. J. Lingwood 

& Walker (1955), on three-dimensional boundary-layer stability, and the earlier hot- 
wire anemometry investigation by Smith (1946) showed the same behaviour in the 
rotating-disk boundary layer. Since the work by Gregory et al. (1955), the rotating 
disk has been used extensively as a model for the boundary layer on a swept wing. The 
rotating-disk problem has certain advantages and simplifications over the swept-wing 
problem: the rotating-disk flow does not have a pressure-gradient parameter or a 
variable sweep angle, it has good experimental control and there is an exact similarity 
solution of the Navier-Stokes equations for the base flow, in which the shape of the 
laminar velocity profiles is independent of the radius. The boundary-layer thickness 
is also independent of the radius. 

It was suggested by Gregory et al. (1955) that small roughness elements on the 
surface fix the vortex pattern in the rotating-disk boundary layer relative to the 
surface. This conjecture was strengthened by the experimental study by Wilkinson 
& Malik (1985) and the theoretical work by Mack (1985). The agreement between 
these two studies showed that the stationary vortices are the result of interfering 
wave patterns originating from randomly positioned roughnesses on the surface of 
the disk. Between 28 and 32 vortices, with a wave angle of about 14" to the outward 
radius vector in the direction of rotation, are observed (e.g. Gregory et al. 1955) 
once the individual patterns have merged and filled the whole circumference of the 
disk. By analysing the frequency content of the noise generated within the boundary 
layer, Gregory et al. (1955) concluded that there are travelling waves as well as 
stationary waves, but naturally their china-clay visualization experiments indicated 
only disturbances fixed relative to the disk. Because of such visualization experiments, 
with few exceptions (e.g. Bassom & Gajjar 1988; Wilkinson et al. 1989; Balakumar & 
Malik 1990; Bassom & Hall 1991; Faller 1991), previous studies of the rotating-disk 
boundary layer have concentrated on the stationary waves. However, the boundary 
layer is also susceptible to excitation from free-stream turbulence and some of the 
resulting travelling waves are more unstable than the stationary waves. 

The stationary vortices, which using the terminology of Lingwood (1995a) are the 
zero-frequency subset of the 'branch-1' modes (a branch of the dispersion relation 
that is unstable in the inviscid limit), are usually observed in experiments. However, 
Fedorov et al. (1976) observed a mode, using visualization techniques, that had a 
wave angle of about 20" and gave between 14 and 16 vortices around the disk. 
These experimental results represent one of few observations of 'branch-2' vortices 
(a branch of the dispersion relation that is stable in the inviscid limit). Figure 6 
of Lingwood (19954 gives a selection of neutral-stability curves (for stationary and 
travelling waves) that shows branches 1 and 2. The nonlinear asymptotic analysis 
by MacKerrell (1987) suggests that stationary branch-2 vortices are dominant for 
large-amplitude disturbances but the normally observed branch-1 vortices dominate 
for small-amplitude disturbances. This suggestion is supported by the theoretical and 
experimental work of Faller (1991). 

Malik, Wilkinson & Orszag (1981) tabulated locations for the onset of transition, 
as found by various experimentalists, and the values show a scatter of less than 3% 
around an average Reynolds number of 513, despite various methods of investigation. 
In particular, experiments by Chin & Litt (1972) showed a well-defined transition 
Reynolds number of 510 and the early experiments of Theodorsen & Regier (1945) 
showed that the Reynolds number for the onset of transition, derived from measure- 
ments of the local drag coefficient, occurred abruptly at R = 510 and could not be 
increased whatever precautions were taken to make the disk smoother. These results 
are in sharp contrast with the onset of transition of the boundary-layer flow on, say, 
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a flat plate, where the onset is sudden but the location is highly dependent on the 
disturbance environment. These observations led M. Gaster (1992, personal commu- 
nication) to suggest the possibility that a well-defined location of absolute instability 
of the rotating-disk boundary layer may be triggering the nonlinear behaviour char- 
acteristic of the onset of transition. Note that some researchers have obtained higher 
transition Reynolds numbers for the rotating-disk flow, e.g. Wilkinson & Malik (1985) 
give values of 543-556 for a ‘clean’ disk and 521-530 for a disk with an artificial 
roughness element. This difference is because they used different criteria for judging 
when the flow is transitional. 

In a previous paper (Lingwood 1995a) results were presented from a linear- 
stability analysis of the rotating-disk boundary-layer flow, which considers travel- 
ling waves (non-zero frequency) as well as stationary waves. The viscous analysis, 
which assumes that the flow is locally parallel (i.e. that locally there is no vari- 
ation in Reynolds number with radius), includes streamline-curvature and Cori- 
olis effects, and shows that for R > 510.625 the flow becomes radially abso- 
lutely unstable, meaning that disturbances grow temporally at fixed radii, lead- 
ing to an unbounded linear response that will promote nonlinearity and maybe 
transition. Below this Reynolds number the flow is convectively unstable or sta- 
ble depending on the parameter values. Lingwood (1995~) uses Briggs’ method 
(Briggs 1964) to distinguish between convectively and absolutely unstable time- 
asymptotic responses to impulsive forcing. The absolute instability is shown to 
result from a coalescence, or ‘pinching’, of two branches of the dispersion rela- 
tion at a complex frequency with non-zero real part and, importantly, with imag- 
inary part indicating temporal growth. From Briggs’ criterion for absolute insta- 
bility, these two modes necessarily represent waves that propagate away from the 
source in opposite directions. The two modes involved are branches 1 and 3, 
where branch-3 modes propagate energy inwards (towards the centre of the disk) 
but are always spatially damped and therefore do not appear on neutral-stability 
curves for convective instability such as figure 6 of Lingwood (1995~). Except for 
Mack (1985) and Balakumar & Malik (1990), branch-3 modes are not mentioned 
in the literature, probably because the rotating-disk problem was thought to be at 
most convectively unstable and, with this erroneous assumption, branch-3 modes 
were not considered to be any more important than other convectively damped 
modes. 

If the linear response to a transient disturbance, e.g. the impulse response, is 
unbounded for large time at all points in space, the flow is said to be absolutely 
unstable, although in a physical system the amplitude of any disturbance is limited by 
nonlinear effects. Sketches of typical impulse responses are shown in figure 1, where 
the radius is r ,  the radial location of the source of the impulse is given by rs and 
disturbances are exponentially amplified within the dashed lines. Figure 1 ( a )  shows a 
convectively unstable case, figure 1 (b )  shows an absolutely unstable case and figure 
1 (c) shows a flow that changes from being convectively to absolutely unstable as the 
Reynolds number (defined as R = r(S2/v)’’’, where Q is the rotation speed and v 
is the kinematic viscosity of air), increases with r ,  i.e. in a non-parallel flow. In the 
convectively unstable case, in figure 1 (a) ,  the disturbance propagates away from the 
source as it grows, leaving the source area undisturbed. In contrast, for the absolutely 
unstable case, in figure l (b) ,  the response spreads into regions on both sides of the 
source, so that the disturbance grows in time at fixed radial positions. In figure 1 (c) 
the source of the disturbance lies in the convectively unstable region of the flow and 
so the disturbance initially propagates away, but at a certain Reynolds number, or 
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FIGURE 1. Sketches of space-time diagrams for typical impulse responses : (a) convectively unstable, 
(b)  absolutely unstable, ( c )  initially convectively unstable but becoming absolutely unstable at 
Reynolds numbers corresponding to radii to the right of the vertical dotted line. The wave packets 
between the dashed lines represent the extent of the unstable region. 

radius, the flow becomes absolutely unstable and the trailing edge of the wedge of 
instability asymptotes towards the vertical, which implies that beyond this radius the 
disturbance grows in time at all fixed radial positions. 

In the experimental study by Wilkinson & Malik (1985), an artificial roughness 
element was placed on the surface of the disk; this created larger than normal 
disturbances, which were easier to measure with a hot-wire anemometer. A variant 
on this idea has been used in the experimental study of the rotating-disk boundary 
layer presented in this paper. Instead of an artificial roughness, a deterministic 
impulsive disturbance has been used to artificially excite the boundary layer with a 
broad frequency spectrum. Through selective amplification of the unstable modes, 
this procedure allows reproducible travelling waves to be measured, as well as the 
stationary waves originating from unavoidable roughnesses on the surface. In a 
similar manner to Wilkinson & Malik (1985), a hot-wire probe was used to measure 
the flow. Although this is an invasive technique, which will cause some disturbance to 
the flow field, it is hoped that this disturbance is small. Furthermore, where the flow 
is convectively unstable, all growing disturbances are swept outwards, which means 
that it is unlikely that the hot wire measures disturbances that it created itself on 
previous rotations of the disk. 

It should be noted that if there are large roughness elements on the surface of the 
disk, stationary vortices may grow sufficiently to distort the mean velocity profiles, 
causing secondary instabilities (Kobayashi, Kohama & Takamadate 1980; Kohama 
1984, 1987; Balachandar, Streett & Malik 1990). Based on smoke-visualization 
experiments, Kohama (1984) suggested that the secondary instability takes the form 
of ring-like co-rotating vortices that appear on the surface of each stationary vortex. 
The Floquet analysis performed by Balachandar et al. (1990) showed that, unlike 
a two-dimensional boundary layer, secondary instability in a crossflow dominated 
three-dimensional boundary layer occurs only under significant modulation of the 
mean flow (two orders of magnitude greater than for a two-dimensional boundary 
layer). It was assumed in the theoretical analysis presented in Lingwood (19954 for 
absolute instability, that wall-roughness and free-stream-turbulence levels are both 
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FIGURE 2. A sketch of the experimental rig. 

sufficiently small for the transition process to be controlled by the stability of the mean 
velocity profiles rather than secondary instabilities, i.e. the model assumes a sufficiently 
‘clean’ environment. To enable comparison with the earlier theoretical results, the 
experimental study described here was performed in as clean an environment as 
possible. Therefore, it is possible that in a less clean environment the dominant 
transition mechanisms is not radial absolute instability, as proposed here, but a 
secondary instability of the modulated base flow. 

The experimental apparatus is described in $2 and was designed and built for this 
investigation. The aim was to minimize, as far as possible, surface roughness and 
vibration of disk as it rotates. Measurements of the mean velocity profiles are given in 
$3.1. Details of the ‘unexcited’ boundary-layer behaviour, i.e. the behaviour without 
any artificial excitation of the boundary layer but nonetheless excited by unavoidable 
sources, are given in $3.2. In the main part of the investigation the boundary layer was 
excited impulsively at a point and the development of the resulting three-dimensional 
wave packet has been measured and the results are presented in $3.3. It is shown that 
the flow tends towards absolute instability as the Reynolds number predicted by the 
theoretical study (Lingwood 1995a) is approached. 

2. Experimental arrangement 
Measurements were conducted with the rotating disk sketched in figure 2. It 

consists of a 475 mm diameter, 30 mm deep, stabilized aluminium-alloy disk that 
was finished with a single-crystal diamond cutting tool to near optical quality. The 
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FIGURE 3. (a) A sketch of stationary disturbances generated by a fixed roughness (marked by a 
black circle) at equispaced instants in time: t = 0, T/4, T / 2 ,  3T/4, T, .... ( b )  A sketch of the 
evolution of a wave packet at four instants in time: t = 0, T/4, T / 2 ,  3T/4, i.e. four hole positions 
(marked by a black circle). The small unfilled circles in (a) and ( b )  represent the hot-wire probe. 

shaft is mounted vertically on a shaft driven by a d.c. servo-motor; both the shaft 
and the motor are an integral part of an air-bearing spindle. The design of the 
drive mechanism was chosen to minimize mechanical vibration of the system. The 
maximum out-of-flatness of the disk while it is rotating, which is predominantly due 
to a small imbalance of the disk rather than any surface roughness, is less than 
1 x m. The disk has constant angular velocity 1;2 to within 0.1%. A two-axis 
traverse mechanism, which carries a hot-wire probe, is mounted on a bar about 160 
boundary-layer thicknesses above the disk. A smoothing screen, with a slit for the 
hot-wire probe to pass through, is positioned below the traverse mechanism to reduce 
the free-stream-turbulence level in the incoming axial flow. The horizontal axis of 
the traverse mechanism is operated by a linear motor and has a step resolution of 
0.2 mm; the vertical axis is operated by a stepper motor with a step resolution of 
0.0025 mm. These two axes allow the hot-wire probe to be moved to any radial 
position on the disk and to any useful height. 

The disturbance of the flow over the top surface of the disk is introduced via a 
0.2 mm diameter hole through the disk at a radius of 100 mm, i.e. the hole occupies 
just over 0.03% of the circumference. The nozzle producing the air jet has a diameter 
of 2 mm at exit and was positioned 2 mm below the entrance to the hole, on the 
underside of the disk. A pulse disturbance is created each time the hole passes over 
the nozzle, i.e. once per revolution of the disk. The amplitude of the pulse could be 
altered using a needle-valve pressure regulator. 

Measurements taken by a hot wire that is free to move in r and z (the axial 
coordinate) but is fixed at some angular position in the laboratory frame Bl (as is 
the case here) can be used to characterize the whole disturbance field generated by 
artificial fixed roughness elements. This is because fixed roughnesses excite waves 
that are stationary with respect to the disk, so the hot-wire probe, at constant r ,  will 
detect the same pattern of disturbance, apart from a shift in phase (depending on 
where the probe is relative to the roughness when sampling is triggered), for all 81. 
Figure 3 (a)  shows a sketch of the disturbance pattern generated by a fixed roughness 
element at equispaced instants in time. The disturbance pattern, which is indicated 
by a trailing wedge, moves round with the roughness such that the hot-wire probe 
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measures the same disturbance at some point in the time series, as the wedge passes 
by, irrespective of its angular position 81. However, when the boundary layer is 
excited by an impulsive point source, hot-wire measurements are dependent on the 
position of the probe. This is illustrated by figure 3(b). The disturbance created by 
the initial pulse is pictured at four instants in time. The boundary layer is perturbed 
at position 1, which creates the wave packet also labelled 1. When the hole has 
reached 81 = 90" ( t  = T/4), labelled 2, the wave packet has reached the position also 
labelled 2, and so on for positions 3 and 4. The hot-wire probe is pictured at 81 = 45", 
where it measures part of the wave packet at t = T/4, at which time the packet lies 
at 8 = -45" relative to hole, i.e. in the rotating reference frame. But at other values 
of 81 (at the same radius) the probe would miss the wave packet completely. Thus, 
to track the developing wave packet and to resolve its structure, it is necessary to 
take measurements at closely spaced radial intervals and angular intervals. To change 
the relative angular position between the probe and the hole at the instant that the 
disturbance is generated, it is necessary to move the nozzle that supplies the jet of 
air. The nozzle can be moved around a circular ring, centred on the axis of rotation 
of the disk and attached below the disk, and clamped in the required position. 

A single hot wire, of about 1 mm length and with a length-to-diameter ratio of 
about 250, was used to measure velocity perturbations. It was positioned parallel to 
the surface of the disk and aligned in the radial (circumferential) direction to measure 
circumferential (radial) velocities. The hot wire must be calibrated using a known 
flow velocity and in many experiments the free-stream velocity provides a convenient 
reference. However, for the rotating-disk flow there is no free-stream flow outside the 
boundary layer (apart from a small axial component); the only known speed is the 
rotational speed of the disk and therefore the speed of the flow at the surface of the 
disk. Clearly, the hot-wire probe cannot measure the flow speed at the surface of 
the disk. An alternative calibration method would be to use a separate calibration 
wind tunnel, but this would involve frequent removal of the hot-wire probe from its 
carrier. Each time the probe is removed and replaced, it needs careful re-alignment 
with the radial (circumferential) direction and the height of the wire from the disk 
must be remeasured. Furthermore, repeated removal of the probe increases the risk 
of damaging the wire. For these reasons, it was decided to calibrate the hot-wire by 
assuming that the mean velocity profiles are those given by boundary-layer similarity 
theory. By knowing the height of the wire from the surface and the speed of rotation, 
the mean velocity at the hot-wire position can be calculated. The hot wire can then 
be calibrated by measuring the mean output voltage from the hot-wire anemometer 
(averaged over 16384 sample points) for a range of mean flow speeds. While the 
anemometer was being calibrated, no input disturbance was applied to the boundary 
layer, therefore the only disturbances were those that occurred naturally. The mean 
flow speed measured by the probe can be varied by changing the rotational speed or 
by changing the radial position of the probe. Whenever possible, the rotation rate and 
position of the probe were chosen to correspond to a Reynolds number below the 
critical value for the onset of growing stationary disturbances. The assumption that 
the mean velocity profiles conform to those predicted by theory was checked and the 
results are discussed in $3.1. Any effects of the axial and radial (circumferential) mean 
velocity components on the calibration for the circumferential (radial) component 
were neglected. The hot wire was calibrated using a modified King's law to extend 
the low velocity range, which was taken from Johansson & Alfredsson (1982) and 
used more recently by Klingmann et al. (1993). 

In order to calibrate the hot wire and to take measurements at specific heights 
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through the boundary layer, it is necessary to have a datum at a known distance from 
the surface of the disk. Each time the hot-wire probe was removed and replaced, 
an optical telescope was used to measure the distance between the hot wire and its 
reflection in the surface of the disk at a radial position close to the centre and a 
position close to the edge of the disk. Two radial positions were used to account for 
any non-parallelism between the disk and the horizontal traverse axis. Assuming a 
linear relation between distance from the disk and radius, a height datum was set 
for the included radial positions, to which all movements were referred so that the 
absolute distance from the disk could be calculated. In $3.1, it will be shown that 
measured mean velocity profiles match the theoretical profiles without any shift in 
height, which implies that this method of determining the height of the hot wire 
above the disk is satisfactory. 

A computer, fitted with an analogue-to-digital (A-D) and digital-to-analogue con- 
verter was used to control the acquisition of data and the traverse. The sampling 
rate was chosen to be a constant multiple of the rotation rate, namely S, = 720Q Hz, 
where D is the speed of rotation of the disk in Hertz. This means that a constant 
number of data points were recorded per revolution of the disk, irrespective of the 
speed of rotation, i.e. 720 data points per revolution. Data logging was synchronized 
with the rotation of the disk by sampling the output signal from an optical tachome- 
ter on one of the A-D channels and triggering the start of data sampling when 
the rising ramp of the voltage pulse from the tachometer reached a threshold value. 
The voltage pulse from the tachometer could be made to coincide with the input 
of the flow disturbance. Before the signals generated by the hot-wire anemometer 
were logged, the signals were amplified and band-pass filtered to prevent aliasing, the 
high-pass and low-pass limits being 4 Hz and S,/2.5, respectively. Ensemble averaging 
has been used to improve the signal-to-noise ratios of the measured time series; each 
ensemble-averaged time series contains 112 single realizations. 

Further details on the experimental apparatus and procedure may be found in 
Lingwood (19954 chap. 6). 

3. Results and discussion 
Unless otherwise stated, all measurements are plotted non-dimensionally, where 

the non-dimensionalizing length, velocity and time scales are (v /D) ' /~ ,  rD and 
( v / Q ) ' / ~ / ( ~ Q ) ,  respectively, such that the non-dimensional radius is equivalent to 
R and the non-dimensional radial and circumferential mean velocities are equivalent 
to the von Karman (1921) similarity variables. 

3.1. Mean velocity profiles 

Circumferential and radial mean velocity profiles were measured and are shown in 
figures 4 (a) and 4 (b), respectively, compared to the similarity profiles calculated by 
von Karman (1921), which are only functions of the non-dimensional axial coordinate 
z .  The velocity profiles were measured at radial locations and Q corresponding to four 
different Reynolds numbers. The circumferential profiles Vl(z) (where the subscript 
2 indicates that the measurements are in the stationary laboratory frame) in figure 
4 (a) match the theoretical curve well, although the discrepancy does increase slightly 
at large z ,  where the mean velocities tend to zero. The agreement between the radial 
velocity profiles U ( z )  (which is independent of whether measurements are taken in 
a stationary or rotating reference frame) and the theoretical curve shown in 4(b)  is 
relatively good but, because the radial velocities are in general much smaller than the 
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FIGURE 4. Mean velocity profiles at various Reynolds numbers: (a)  circumferential velocities Vl(z) 
(in the laboratory reference frame), (b)  radial velocities U ( z ) ,  (c) circumferential velocities V , ( z )  into 
the turbulent regime. The solid lines indicate the theoretical profiles. 

circumferential velocities, the radial velocities have lower signal-to-noise ratios. For 
this reason, the experimental measurements described later are circumferential, rather 
than radial, components of velocity. No axial components have been measured. There 
is good data collapse over the range of R shown, indicating laminar flow. 

Figure 4 (c) shows circumferential velocity profiles at Reynolds numbers corre- 
sponding to turbulent flows. The solid line and the dots are the same data as plotted 
in figure 4(a) and are included for reference. The profiles at R w 555 and R = 568 
are significantly different from the theoretical laminar profiles, but they are not yet 
fully turbulent like those from R w 615 to R w 752, which are characterized by a 
much thicker boundary layer. Thus, as found in previous studies, it can be concluded 
that the boundary layer is transitional at R w 555 and R w 568, and fully turbulent 
by R w 615. The turbulent profile for R w 752 was measured within 5 mm of the 
edge of the disk, and yet it is similar to the other turbulent profiles. It seems that 
edge effects (i.e. deviations from the theoretical behaviour, which assumes an infinite 
disk) are minimal. 

Note that no shift has been applied to the data points plotted in figure 4. This 
indicates that the positioning of the hot-wire probe at a particular height in the 
boundary layer, described in $2, is sufficiently accurate for these purposes. 
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3.2. The unexcited flow 

3.2.1. Time series for  the unexcitedflow 

During this investigation the hole was taped over on the underside of the disk, but 
the exit hole on the topside was not plugged in any way. Measurements were taken 
at z = 1.3, because the velocity perturbations have a maximum at about this height 
(see $3.2.3). 

The process of ensemble averaging a number of individual time series has the 
effect of reducing the amplitude of features that are not repeated in those time series. 
Thus, if an artificial roughness element, which excites modes that are stationary with 
respect to the disk, were put on the disk then the repeatable features would be 
stationary and the effects of naturally occurring random excitation from free-stream 
turbulence would not be seen in the ensemble-averaged record. Here, there are no 
artificial roughness elements, as such, but there are likely to be small dust motes and 
surface imperfections that excite repeatable disturbances from one revolution to the 
next. Accordingly, the ensemble-averaged time series shown in this section highlight 
stationary disturbances and give no information on random travelling disturbances 
in the boundary layer. It follows that ensemble averages disguise the onset of 
transition, because localized turbulent bursts occur randomly through the individual 
time series and, while repeatable structures remain, the ensemble-averaged record can 
look similar to those from a laminar flow. However, the standard deviations of the 
individual realizations away from the ensemble average, and individual realizations 
themselves can be used to assess the true nature of the flow. 

The behaviour of the boundary layer might be expected to be the same, provided 
the Reynolds number is the same, irrespective of physical position and speed of 
rotation. But it is conceivable that the speed of rotation has an effect on receptivity 
mechanisms, enhancing or inhibiting the process of internalizing disturbances. If this 
were the case, then the speed of rotation would influence the extent to which the hole 
acts as a source of stationary modes, as well as the extent to which other unavoidable 
sources excite the boundary layer. This conjecture has not been studied in detail, 
but sets of measurements were taken at two disk speeds: D = 1000 and 1400 r.p.m. 
Figures 5 (a) and 5 (b)  show peak-normalized (a form in which it is easier to see the 
origins of the stationary disturbances) time series of the circumferential perturbation 
velocity u at D = 1000 r.p.m. and D = 1400 r.p.m., respectively. The vertical 
placement of each time series is proportional to its non-dimensional radial position, 
i.e. proportional to its Reynolds number, and each trace covers one revolution of the 
disk. The measurements in figures 5 (a) and 5 (b )  are plotted to the same scale and, 
apart from the lowest two traces, they were taken at the same physical radii but, 
because D is larger in figure 5 (b), the corresponding Reynolds numbers are larger and 
the time series extend further into the turbulent regime. The traces labelled R w 266 
and R w 311 in figures 5 (a) and 5 (b), respectively, correspond to the radial positions 
at which the hole lies. 

In both figures 5 (a) and 5 (b),  if the hole were generating stationary disturbances, 
there would be a wedge of instability waves originating from the third trace from the 
bottom at t = 0. At s2 = 1000 r.p.m. there does not seem to be any such disturbance 
pattern. However, at s2 = 1400 r.p.m. there is a wedge of disturbances that seems 
to originate in the region of the hole. This difference could simply be due to the 
higher Reynolds number at the hole for figure 5(b) ,  or it could be that the increased 
disk speed enhances the receptivity of the boundary layer to stationary disturbances. 
In both cases, there is a source of stationary disturbances that lies at a radius of 
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FIGURE 5. Peak-normalized ensemble-averaged time series of v, lasting one time period and 

measured at Oi = O", various radial locations and z = 1.3: (a )  SZ = 1000 r.p.m., ( b )  52 = 1400 r.p.m. 

about 120 mm (seventh trace from the bottom) and t / T  w 0.57, which corresponds 
to 8 w -205" (205" from the hole in the opposite direction to the rotation). The 
disturbances originating from the second source are larger than those created by 
the hole, suggesting that the hole is less of a source of stationary disturbances than 
unavoidable sources, such as dust and surface imperfections. 

For Reynolds numbers of about 622 and above, there are no repeatable structures 
remaining and the behaviour is fully turbulent. This is consistent with measurements 
of the mean circumferential velocity profiles, given in figure 4(c), where the profile 
is characteristic of a fully turbulent boundary layer for Reynolds numbers above 
about 615. For both figures 5(a )  and 5(b), the peak amplitude of u is about 
0.03 at R w 500 (i.e. 3% of the local disk speed) and only about 7 x lop4 at the 
Reynolds number corresponding to the hole. As mentioned in the introduction, 
Balachandar et al. (1990) performed an analysis of the rotating-disk boundary layer 
that showed that at R = 500 a primary disturbance root-mean-square amplitude 
of about 9% is needed for the onset of secondary instabilities. The results of this 
study imply that here the stationary disturbances are sufficiently small, even close to 
the onset of transition, for the boundary-layer stability to be governed by the mean 
velocity profiles rather than secondary instabilities. 

Figure 6 shows typical single realizations included in three of the ensemble-averaged 
time series in figure 5(b) at Reynolds numbers in the region corresponding to the 
onset of transition. Figure 6 also shows the standard deviations 0 associated with 
these data sets, plotted as non-dimensional velocities and to the same scale as the 
single realizations for ease of comparison. At R w 497, 0 is so small compared with 
its peak values at R w 514 and R w 530 that it is hardly visible in figure 6(b). At 
R w 514, in figures 6 (c) and 6 ( d ) ,  0 is generally larger and has two pronounced peaks 
between t / T  = 0.8 and t / T  = 0.9, which indicate that the features in the time series 
at these times were unrepeatable from realization to realization. The peak value of 0 
at R w 514 is nearly six times larger than the peak value at R w 497. This sudden 
increase in 0 from a nearly constant low level at Reynolds numbers below R w 514 
suggests that there is a sudden increase in the amplitudes of random events at about 
this Reynolds number and that transition from laminar to turbulent flow begins 
between R w 497 and R w 514. The same behaviour is observed at these Reynolds 
numbers when !2 = 1000 r.p.m. Figures 6(e) and 6v)  show that by Reynolds 
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FIGURE 6. Examples of single realizations included in three of the ensemble-averaged time series, 
given in figure 5 (b) ,  and cr associated with these ensemble averages: (a,b) R o 497, ( c , d )  R o 514, 
(ef) R = 530. 

numbers of about 530, a large part of the time series is highly unrepeatable and the 
boundary-layer behaviour is increasingly nonlinear. The time series, however, is still 
characterized by interacting packets of waves, originating from separate sources, and 
does not look significantly different from the laminar time series. Chin & Litt (1972) 
also mentioned the persistence of stationary vortices in the transitional flow, and they 
suggested that the vortices remain attached to the surface in the viscous sublayer. The 
dominant features of 0 in figure 6 0  are regions of periodicity between t / T  = 0.5 
and t /T  = 0.6 and between t / T  = 0.8 and t / T  = 1.0, in which the peaks of D are, 
in general, aligned with troughs in the time series, which indicates that from one 
realization to the next the amplitude of the these troughs is highly variable relative 
to the neighbouring peaks in the time series. The same features were observed by 
Shaikh (1993) in the Blasius boundary layer, where peaks in 0 in the transitional 
region of the flow were found to be associated with troughs in the time series and 
the largest of these peaks developed downstream into turbulent spots. Poll (1985), for 
the flow round a yawed cylinder, and Healey (1995), for the Blasius flow, also noted 
that sufficient modulation of the mean velocity profiles causes the profiles to become 
inflectional and highly unstable to travelling waves. The alignment of peaks in cs 
with troughs in v could be related to this instability. In a few cases, for example at 
t / T  = 0.59 in figure 6 0, the peak in 0 is aligned with a maximum in the gradient of 
u,  which could be due to varying phase of the wave from one realization to the next. 

Figure 7 shows typical single realizations included in four of the ensemble-averaged 
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FIGURE 7. Examples of single realizations included in four of the ensemble-averaged time series, 

given in figure 5 ( b ) :  (a) R = 559, (b) R = 575, (c) R = 591, ( d )  R = 606. 

time series given in figure 5 (b)  at high Reynolds numbers. At R = 559, in figure 7 (a),  
there is a region of high-frequency oscillation at the beginning of the time series. This 
region expands with increasing Reynolds number and at R = 606, in figure 7 ( d ) ,  the 
time series appears fully turbulent, although the corresponding ensemble-averaged 
time series in figure 5(b )  still has remnants of the periodicity associated with the 
stationary waves. 

In passing, it is worth noting a common feature of the time series measured 
at Reynolds numbers above about 450 and before fully turbulent behaviour sets 
in, namely kinks in the time series at points where two wave packets, which have 
originated from different sources, merge. For example, figure 8 shows an ensemble- 
averaged time series measured at R = 502, where two such kinks are shown at 
t / T  = 0.37 and t / T  w 0.87. As suggested by Le Gal (1992), these kinks seem to arise 
because of a phase difference between two merging wave packets. Kinks in time series 
have also been associated with secondary instabilities (Kohama 1987; Wilkinson & 
Malik 1985), but these were observed within a wave packet and not where individual 
packets merge. For example, figure 11 of Wilkinson & Malik (1985), which is for a 
study of natural transition of the rotating-disk boundary layer, shows a time series 
with a kinked central region that is explained as inflections of the primary vortices, 
i.e. secondary instabilities. This behaviour was found to be most prominent in a range 
of transitional Reynolds numbers that shifted to lower Reynolds numbers (between 
R w 520 and R = 530) when an artificial roughness (0.13 mm high by 0.64 mm square) 
was placed on the disk at R = 249. No such behaviour was observed here before 
the onset of turbulent bursts although, perhaps, there are occasional kinks in figure 
7 ( b )  at R w 575 between t / T  = 0.2 and t / T  = 0.5, but nothing with the degree of 
periodicity observed by Wilkinson & Malik (1985) .  Thus, it is suggested that, in this 
case, secondary instabilities do not play an important part in the onset of transition 
from laminar to turbulent flow, although they might if the surface roughness were 
larger causing primary stationary vortices with larger amplitudes. 
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FIGURE 8. A closer view of the R s 502 ensemble-averaged time series given in figure 5 (a), 
showing two kinks: one at t / T  = 0.37 (labelled l), the other at t / T  s 0.87 (labelled 2). 
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FIGURE 9. Fourier power spectra for single-realization time series (-) and ensemble-averaged 
time series (. . . . . .) for SZ = 1400 r.p.m. and z = 1.3 for the unexcited boundary layer: (a) R = 281, 
( b )  R = 482, ( c )  R = 497, ( d )  R = 514, (e) R = 560, v) R s 622. For R > 510, the horizontal solid 
lines indicate the absolutely unstable frequencies. 

3.2.2. Power spectra for the unexcited $ow 
Fourier power spectra were calculated to show the frequency content of the time 

series discussed above. For example, figure 9 shows power spectra for six differ- 
ent Reynolds numbers, calculated from single-realization time series and ensemble- 
averaged time series both measured at O = 1400 r.p.m. and z = 1.3. The spectral 
amplitudes P(cor) are plotted against the non-dimensional quantity w I / Q  where wI 
is the angular frequency of oscillation measured by the hot-wire anemometer in the 
laboratory reference frame. Note that u l / O  = w / Q  + p, where w is the distur- 
bance frequency in the rotating frame and p is the circumferential wavenumber, 
therefore stationary vortices (for which w = 0 by definition) are characterized by 
values of wl/sZ = p and oscillations associated with the small imbalance of the disk 
rotation have w I / Q  = 1. Normally, neutral-stability curves are given for stationary 
waves, where branch 1 has higher co[ than branch 2, but for travelling waves the 
situation is more complicated. The power spectra were calculated from periodic (non- 
dimensional) circumferential velocity time series as one-sided spectra, i.e. extending 
from coI = 0 to coI = S,/2.5 (the sampling frequency). 

The broad-band content of turbulent spectra is expected to be more pronounced 
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in spectra of single-realization time series than those of ensemble-averaged data. 
Single-realization time series include non-deterministic non-stationary waves (w # 
0), because these components are not averaged away by the ensembling process. 
Accordingly, single-realization power spectra may show features not included in 
the ensemble-averaged spectra, which necessarily show only repeatable disturbances, 
such as those generated by fixed roughnesses. The dominant feature of the power 
spectra for R = 278, in figure 9(a), is a spike in P(w1) at wl/Q = 1, which is 
due to the imbalance of the disk and this part of the curve can be disregarded. 
Other frequencies have a uniformly low background-noise spectrum. As expected, 
the ensemble-averaged spectrum has a lower background-noise level. At R m 482, in 
figure 9 (b) ,  there is a band of 01 in both the single-realization and ensemble-averaged 
spectra where P(wl)  is large, with a maximum amplitude at wl/Q w 30, superimposed 
on a very similar background spectrum to that in figure 9 (a). The agreement between 
the single-realization and ensemble-averaged peak in P (wI) suggests that this peak 
describes predominantly stationary disturbances. At R = 482, linear theory predicts 
that stationary modes are unstable for values of p (and therefore o,/Q) between about 
20 and 60, a range that approximately describes the large-amplitude frequencies in 
figure 9(b). In the experiment, the largest components are those that have been 
convectively unstable below this Reynolds number and have therefore had more 
space in which to grow. The shape of the neutral-stability curve for stationary modes 
implies that frequencies with the largest amplitudes are likely to be closer to the 
lower end of the unstable range, i.e. closer to wl/Q = 20, because these are the 
frequencies that become unstable first. As expected, the 28-32 stationary vortices 
observed in visualization experiments are not the product of a single wavenumber, 
but are due to a superposition of wavenumbers (Mack 1985; Wilkinson & Malik 
1985). At R m 497, in figure 9(c), both power spectra are qualitatively similar 
to those at R m 482. The peak is larger than at R w 482, but occurs at about 
the same frequencies and the background-noise levels at the two Reynolds numbers 
are quantitatively similar. Again, the agreement between the single-realization and 
ensemble-averaged fundamental peaks and the small harmonic peaks, centred on 
wl/Q w 60, suggests that these features are well described by the ensemble-averaged 
signals and are stationary with respect to the disk. The appearance of a harmonic 
component shows that there is some nonlinear behaviour but, because there is little 
broadening of the spectra, this nonlinearity does not seem sufficient to cause the 
onset of transition. However, at a slightly higher Reynolds number there is a sudden 
change in the nature of the spectra. At R w 514, shown in figure 9(d), there is about 
a tenfold increase in the background-noise level (in both the single-realization and 
ensemble-averaged spectra) as well as a tenfold increase in the fundamental and the 
harmonic peak. Figures 9 (e) and 9 v) show power spectra for R = 560 and R m 622, 
respectively, where there is a general broadening and increase in amplitude of the 
spectra. At R m 622, there is no longer any sign of the peak associated with the 
primary stationary vortices and the flow is fully turbulent. 

Power spectra were also calculated from time series measured with the disk rotating 
at 1000 r.p.m. The spectra are similar to those in figure 9. Between R m 502 and 
R w 514, there is a general broadening of the spectra and the background-noise levels 
of both the single-realization and ensemble-averaged spectra increase about tenfold 
from a constant low level. 

Absolutely unstable frequencies, calculated by Lingwood (19954 are indicated 
in figures 9(d-f) by a horizontal solid line. Because calculation of the absolute 
frequencies was based on a local stability analysis, which assumes a locally parallel 
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FIGURE 10. Profile of u,,, for the unexcited boundary layer at R = 502 and SZ = 1000 r.p.m., 
calculated from ensemble-averaged data. 

flow, it is not clear at what exact frequency absolute growth of disturbances would 
be expected in the true spatially varying boundary layer. Nonetheless, as discussed by 
Koch (1985), linear theory gives a useful first approximation of the global frequencies, 
but nonlinear theory, which is outside the scope of the present work, is needed for 
comparison of theoretical and experimental disturbance amplitudes. It is unfortunate 
that for measurements made in the laboratory reference frame, the absolutely unstable 
frequencies intersect with the harmonic frequencies of the primary stationary vortices 
(in a rotating frame the absolute frequencies are negative but, combined with positive 
p, coI is positive), making it difficult to assess whether there is growth in the spectral 
components associated with the absolute frequencies. Furthermore, it is travelling 
modes that become absolutely unstable and these are randomly excited and therefore 
can only be expected in the single-realization power spectra. However, the single- 
realization power spectra do not show a well-defined absolute frequency ensuing close 
to the critical Reynolds number for the onset of absolute instability, but results from 
the excited flow, given in the next section, provide more direct evidence that the flow 
becomes absolutely unstable. 

3.2.3. The axial structure of the unexcited disturbance field 
To characterize the z-structure of the unexcited disturbance field, the root-mean- 

square (denoted by the subscript rms) amplitudes of circumferential velocity pertur- 
bations were calculated. For example, figure 10 shows a profile of v,,, at R m 502. The 
data points (0) have been interpolated with cubic-spline fits to produce an approxi- 
mate curve of the perturbation profile. As expected, the perturbations decay at large 
z and, although there are not enough points to be sure, figure 10 appears to have 
three maxima: at z w 1.3, z w 1.9 and z w 2.7. The maximum at z w 1.9 is the largest 
at this Reynolds number. Nevertheless, for general circumferential measurements, 
where only one height in the boundary layer was considered, z = 1.3 was the chosen 
position because the disturbances are close to their maximum at this position and 
because the mean circumferential velocity is greater there than at the higher maxima, 
giving a more accurate hot-wire calibration. 

To further illustrate the effect that perturbations have on the mean flow, figure 
11 shows instantaneous circumferential velocities at four Reynolds numbers (Q = 
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FIGURE 11. Instantaneous circumferential velocities for the unexcited boundary layer: (a) R = 450, 
t / T  = 0.93; (b)  R w 476, t / T  = 0.58; (c) R = 502, t / T  = 0.18; ( d )  R = 528, t / T  = 0.19. Solid 
lines give the theoretical mean circumferential profile, o mark instantaneous profiles taken from 
ensemble-averaged time series and x mark the scatter from single-realization time series. 

1000 r.p.m. and 191 = 0"). The solid line gives the theoretical mean circumferential 
profile, the circles mark instantaneous profiles of PI = Vl + z), calculated from 
ensemble-averaged perturbation data and using the theoretical mean velocity VI, and 
the crosses indicate the scatter due to randomly excited travelling waves taken from 
single-realization time series. The time instant for each plot is chosen to include the 
maximum single-realization value of z) at the respective Reynolds numbers. Thus, the 
instantaneous velocities show the maximum mean-flow distortions that occur in one 
revolution of the disk. 

Clearly, for R m 450 and R w 476 the instantaneous velocities lie close to the 
theoretical mean profile; the maximum disturbance amplitudes (derived from the 
ensemble-averaged data) are about 0.23% and l.8%, respectively. By R = 502 
the maximum disturbance amplitude has increased to about 3.4% and 6.1% for 
ensemble-averaged and single-realization data, respectively, and there is a more 
noticeable distortion of the mean-flow profile in figure 11 (c). But, on either basis, 
these maximum amplitudes are still less than the threshold amplitude (9%) predicted 
by Balachandar et al. (1990) for the onset of secondary instabilities at R = 500. 
Furthermore, the results given in $3.2.1 do not indicate the presence of secondary 
instabilities before the onset of transition. Thus, it is likely that use of the theoretical 
mean profile in linear-stability analyses is still justifiable at this Reynolds number. 
However, by R e 528 the mean-flow distortion shown in figure 11 ( d )  is significant and 
the power spectra, shown in figure 9, indicate that the flow has become transitional. 
The instantaneous profile based on ensemble-averaged data has a maximum amplitude 
of about 7.3%, which could perhaps be considered small enough for the theoretical 
mean profile to be used in a linear-stability analysis, but the instantaneous velocity 
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that includes random travelling disturbances and possibly high-frequency oscillations 
associated with turbulent bursts now has a maximum amplitude of over 14%. 

Note that the mean velocity profiles in figure 4 are derived from average velocities 
over many revolutions of the disk at particular heights in the boundary layer and 
therefore result from the average of instantaneous profiles, such as those in figure 11, 
at many successive times. 

3.3. The excited f low 

The boundary layer was excited impulsively once per revolution of the disk through 
a 0.2 mm hole at a radius of 100 mm. The amplitude of the pulsed disturbance 
was sufficiently large for the wave-packet development to be tracked easily, without 
being large enough to bypass the linear stages of development, or to be unrepeatable 
from one realization to the next. If the amplitude of the input disturbance was too 
large, localized turbulent spots were generated, which then propagated through the 
otherwise laminar boundary layer. It has yet to be determined whether this affects the 
position of the transition front. Figure 12 (a)  shows the pulse, with the hot-wire probe 
positioned directly over the hole ( z  = 1.3) at the time of excitation ( t / T  = 0), with 
SZ = 1000 r.p.m. The disturbance generated by the pulse is sharp and impulse-like, as 
required to excite a broad spectrum of frequencies, and there is very little overshoot, 
i.e. negative disturbances around the main pulse, as was the case with the acoustic 
forcing of the rotating-disk boundary layer performed by Wilkinson et al. (1989). 
Figure 12(b) shows the power spectrum P(w1) calculated from the time series shown 
in figure 12(a). Clearly, the pulsed disturbance excites a broad range of frequencies. 
The spectrum is particularly flat for frequencies up to fifty times the disk frequency, 
beyond which there is a steady decrease in the amplitude of P(o1)  due to the small, 
but finite, width of the pulse. 

3.3.1. Time series for  the excited f low 

As discussed in $2 with the aid of figure 3 ( b ) ,  it is necessary to take measure- 
ments at angular and radial intervals to characterize the development of the wave 
packet generated by the point source. Accordingly, measurements were taken at 10" 
intervals, covering 360", and at 5 mm radial intervals, between 90 mm and 210 mm. 
Measurements were taken at these positions with the disk spinning at 1000 r.p.m. and 
1400 r.p.m., so that the radial ranges correspond to Reynolds numbers of 238-555 
and 280-654, respectively, and giving Reynolds numbers of about 266 and 311, re- 
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spectively, at the source position. In this section, all measurements were taken at 
z = 1.3. 

Figure 13 shows a small selection of ensemble-averaged time series, each lasting 
one time period, of the circumferential perturbation velocity u at different angular 
positions of the hot-wire probe. The vertical placement of the time series in each 
plot is proportional to its radius or Reynolds number. The externally applied pulse 
is clearly visible in figure 13 (a) at t = 0 and R w 311. The start of every time series 
coincides with the time at which the boundary layer is perturbed. The generated wave 
packet initially moves radially outwards and moves forwards in 81, but does not keep 
pace with the angular position of the hole and therefore falls increasingly behind, in 
much the same way as sketched in figure 3(b) ,  and the radial and angular extent of 
the packet increases with time. For instance, at t /T  = 0.5, when the hole has moved 
through half a turn, the wave packet has moved through about 60" (see figure 13 b). 

By the time the wave packet has reached 81 = 80" the disk has completed one 
revolution since the initiation of the pulse, and figure 13 (e) shows the packet after a 
second revolution of the disk. In the second revolution, the trailing edge of the packet 
moves through 8l w 140" compared with 81 w 80" in the first revolution, which implies 
an increasing circumferential propagation velocity with increasing Reynolds number. 
The radial propagation velocity of the wave packet is better shown by later figures. 
The packet does not progress much beyond R w 520 before its smooth structure is 
destroyed by bursts of turbulence, characteristic of the onset of transition, in regions 
of large-amplitude fluctuations. By R w 615 the time series look fully turbulent. 

Having followed the wave-packet development through to 81 = 300", in figure 13 v), 
further development can be traced through 81 = 360" = 0" (figure 13a), and so on, 
although by this stage the wave packet has almost completely merged with the radial 
band of transitional flow that exists at all angles. 

As well as the dominant travelling waves excited by the localized pulse, there are 
also stationary waves excited by fixed roughnesses on the disk. In fact, the wave- 
packet disturbances are superimposed on an unexcited disturbance environment, as 
discussed in $3.2. Figure 14 shows an expanded view of a section of figure 13 (a). Here, 
each ensemble-averaged time series is peak normalized to show small disturbances 
that are not otherwise visible. In particular, figure 14 shows stationary disturbances 
generated by a surface imperfection at a radius of about 120 mm ( R  w 373 at 
Q = 1400 r.p.m.) and 0 w -205" (see $3.2). 

The development of the wave packet, which is in (r,&t)-space, can be projected 
onto (r,t)-space, to assess the radial propagation of the packet. Figure 15(a) shows 
the progression of the wave packet for four disk revolutions, where z = 1.3 and 
Q = 1400 r.p.m. This figure consists of an overlay of thirteen contour plots, each 
corresponding to a different Ol,  ranging from 0" to 330". For clarity, only one contour 
level has been plotted, namely the 0.008 amplitude level (0.8 % of the local disk speed) 
of the envelope function e,(t;&), which is illustrated in figure 16. The definition for 
the envelope function is taken from Gaster & Grant (1975), namely e, = (u: + u?) ' i2,  
where u, is the velocity record and ui is the original velocity record with the phase 
of all frequencies shifted through 90", which is conveniently constructed in Fourier 
space and is equivalent to the Hilbert transform of ur. 

Figure 15(b) shows the leading and trailing edges of the wave-packet trajectory 
derived from figure 15 (a). Lines have been fitted, in a least-squares sense, to the data 
points. Both lines were constrained to pass through the source position at R w 311 
and t = 0. The leading edge is modelled by a straight line with gradient 0.0038, which 
corresponds to a velocity of about 1.97 m s-l, while the trailing edge is modelled as 
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FIGURE 13. Ensemble-averaged time series of u for the excited boundary layer at z = 1.3 and 
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an asymptote to the critical Reynolds number for the onset of absolute instability, 
and is given by 

This choice of model for the trailing edge was influenced by local linear-stability 
theory, in which the steepest-descent method can be used to calculate the time- 
asymptotic approximation to the impulse response in a quasi-parallel flow (e.g. Huerre 
& Monkewitz 1985, 1990) and the criterion for absolute instability of the flow is 
growth of disturbances along the 'ray' for which (r - rs)/t = 0 (r, is the source 
radius), i.e. temporal growth in a reference frame that has zero velocity in the radial 
direction, so in either the laboratory or the rotating reference frame (see figure 1 b). 
Here, in a flow that is non-parallel in the sense that the Reynolds number varies with 

t / T  FS 0.011r - 3.57 + 27.08/(510 - r). (3.1) 
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FIGURE 14. Expanded section of figure 13 (a) showing peak-normalized 
ensemble-averaged time series. 

radius and that is thought to become absolutely unstable at a particular Reynolds 
number, it is expected that there will be temporal growth of disturbances along the 
ray (r  - rc ) / t  = 0, where rc is the radius at which the non-parallel flow becomes 
absolutely unstable. Below this radius the flow is convectively unstable. In order 
to match the absolutely unstable behaviour to the preceding convectively unstable 
behaviour, it seems likely that the trailing edge, or ray, of the disturbance tends 
towards the vertical as it approaches the critical radius for the onset of absolute 
instability, i.e. approaches (r  - rc) / t  = 0 as sketched in figure 1 (c). In figure 15 (b )  the 
trailing edge was constrained to asymptote towards a critical radius of 510, which is 
the location for the onset of absolute instability derived from a local linear-stability 
analysis (Lingwood 1995~). Clearly, this value may not apply exactly to the true 
non-parallel flow, but the experimental points marking the trailing edge in figure 
15(b) do closely follow the predicted behaviour. The wave packet is undoubtedly 
convective at low Reynolds numbers, it is limited by rays with positive gradient 
as it convects outwards from the source, and spreads both radially and temporally 
with increasing Reynolds number. However, the radial wave-packet propagation is 
limited, such that the packet is no longer defined for Reynolds numbers much above 
500, but continues to convect circumferentially even when its radial leading edge is 
disintegrating. The wedge of instability encompassing the wave packet tends towards 
the vertical in figures 15 (a )  and 15 (b )  as the critical Reynolds number for the onset 
of absolute instability is approached. This causes a build-up of energy at Reynolds 
numbers close to the calculated critical value for the onset of absolute instability and 
leads to a final state determined by nonlinear effects. 

Note that the stationary disturbances do not show this type of behaviour. For 
instance, figure 17 shows a contour plot of the envelope function for stationary dis- 
turbances taken from figure 5 (b).  Included in figure 17 are wedges of instability origi- 
nating from two fixed roughnesses: the hole used for disturbing the flow and a second 
source of stationary disturbances (see $3.2) at a radius of about 120 mm ( R  w 373 at 
52 = 1400 r.p.m.) and t / T  w 0.57, which corresponds to 6 w -205". The trailing edge 
of the stationary disturbances reach a radius of 510 in t w 3T/4 from their initiation 
in marked contrast to the travelling waves. The bounding rays have approximately 
constant gradient with increasing Reynolds number, implying that the stationary 
disturbances remain convective up to transitional Reynolds numbers. Note that the 
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FIGURE 15. (a )  Contour plot, at the 0.008 level, of the wave-packet envelope at z = 1.3, Q = 1400 
r.p.m. and Or = O", 20", 40", 60", 90", 120", 150", 180", 210", 240", 270", 300", 330". ( b )  Leading edge 
(x)  and trailing edge (0) of the wave-packet trajectory, taken from (a), and least-squares fits to the 
experimental data (-). The critical Reynolds number for absolute instability, 510, is indicated by 
a dotted line. 

FIGURE 16. Time series (. . . . . .) and the associated envelope function (-) for the excited boundary 
layer at R w 425, z = 1.3, 81 = 90" and Q = 1000 r.p.m. The origin of the time series has been 
shifted so that the packet lies more centrally. 
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FIGURE 17. Contour plot of the envelope function for stationary disturbances, at levels 0.001, 0.002, 
0.004 and 0.008 (marked by 1, 2, 4 and 8, respectively), at z = 1.3, 52 = 1400 r.p.m. and Bl = o", 
for four revolutions of the disk. The leading and trailing edges have gradients of about 0.0090 
and 0.0038, respectively. The hole in the disk and a second source of stationary disturbances are 
indicated by o and x, respectively, and a dotted line marks R = 510. 

trailing edge of the stationary disturbances has a gradient of about 0.0038, which is 
approximately the same as the leading edge of the travelling disturbances in figure 15. 

3.3.2. Power spectra for  the excited flow 

As for the unexcited boundary layer, Fourier power spectra have been calculated 
to determine the frequency content of the time series discussed above. There are 
spectra available at every radial location and all &-positions for the two disk speeds 
considered, but only a limited selection will be presented here. Figure 18 shows 
examples of power spectra calculated from ensemble-averaged time series, shown as 
contour plots of log(P(ol)) for f2 = 1400 r.p.m. and a range of Q l .  The shading marks 
the high and low ground and the contour lines are at integer intervals, i.e. tenfold 
increments in P ( q ) .  The lowest contour line level (-9) was chosen to be just above 
the background-noise level before the onset of transition (see figure 9), so that the 
increase in power over a broad range of frequencies associated with the onset of 
transition is easily identifiable. 

In all the plots in figure 18 there is a ridge centred on ul/Q = 1, which is due to 
the small imbalance of the disk and can be disregarded. In figure 18(a) ,  the ridge 
of high-amplitude spectral components at R = 311 clearly shows the broad range 
of frequencies excited by the pulsed disturbance (see also figure 12b).  Immediately 
after initiation of the pulse, the large amount of energy present in the damped modes 
decreases and initially the growing modes are unable to compensate, resulting in a 
drop in disturbance amplitude and a decrease in bandwidth of the spectrum, which 
implies a spreading of the pulse in physical space. By the time the wave packet has 
moved to larger Reynolds numbers and Ol = 20°, the high-frequency components 
have decayed, while a peak has emerged for a range of ol/Q centred on about 25. In 
figures 18(c) and I8(d) ,  this peak begins to split into two separate peaks: a region 
that remains centred on al/Q = 25 and one centred on wl/O = 10. This could be an 
indication of the presence of two wave packets within the developing disturbance, as 
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FIGURE 18. Contour plots of log(P(ol)) at s2 = 1400 r.p.m. for the excited boundary layer: 
(a) 81 = O", ( b )  Or = 20", ( c )  81 = 40", ( d )  81 = 60", ( e )  01 = 80", v) 0, = 140". See figure 19 for the 
greyscale key. 

expected from the fact that the dispersion relation supports two convectively unstable 
families of solution: branch-1 and branch-2 modes, both of which are discussed in $1. 
If this is the case, the higher-frequency peak is probably due to branch-2 instabilities, 
because it is dominant at low Reynolds numbers, and the lower-frequency peak 
is likely to be caused by branch-1 instabilities that become more dominant with 
increasing Reynolds number. The origins of these two peaks in P ( w ~ )  are discussed 
further in the next section, where time series are analysed using wavelet transforms. 

The development of the peaks in P(o1) is complicated by their merger with 
contributions that are centred on o1/4 = 30 for Reynolds numbers greater than 
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FIGURE 19. Contour plots of log(P(o1)) at 51 = 1400 r.p.m. and z = 1.3: (a) 81 = 330" for the 
excited boundary layer, ( b )  8, = 0" for the unexcited boundary layer. 

about 400, which are probably due predominantly to stationary disturbances. Now 
that repeatable travelling waves have been excited, there is no guarantee that these 
components are due solely to stationary disturbances, only that the disturbances are 
deterministic. But the fact that, where they are distinct from the developing travelling 
frequency regions, they do not change much with 61 suggests that approximately the 
same wave pattern is measured irrespective of the angular position of the probe, which 
is characteristic of disturbances that are fixed with respect to the disk. At higher 
61, figure 18 ( e f ) ,  the lower-frequency peak becomes less well defined and harmonics 
of the higher-frequency peak develop as it merges with the contributions centred on 
col/L? NN 30. The background-noise level does not increase with the emergence of these 
harmonics, which suggests that although there must be some nonlinear behaviour it is 
does not yet promote the onset of transition. Spectra calculated from data measured 
at L? = 1000 r.p.m. are similar to those shown here, and all show that the broadband 
content characteristic of the onset of transition begins between R NN 500 and R NN 520; 
some of the variation in this threshold could be due to the fact that the ensemble- 
averaging process tends to increase the signal-to-noise ratio, making the spectra of 
ensemble-averaged time series less sensitive to emerging bursts of turbulence. 

Beyond 61 NN 200" the qualitative features of the spectra do not change signifi- 
cantly: these spectra will be referred to as 'developed' spectra. Figures 19(a) and 
19(b) show power spectra, plotted in the same way as figure 18, calculated from 
ensemble-averaged time series measured in the excited and unexcited boundary layer, 
respectively, where figure 19(a) is a developed spectrum measured at Or = 330". The 
agreement between the two figures suggests that the same behaviour occurs whether 
the boundary layer is externally excited or not, which is consistent with absolute 
instability promoting the onset of transition, because this mechanism can start from 
the smallest amount of noise and would operate even if appropriate frequencies were 
not artificially applied to the boundary layer. Note that in a convective flow, such 
as the Blasius boundary layer, the introduction of artificial disturbances dramatically 
changes the Reynolds number at which transition is observed. 

3.3.3. Wavelet-transform analysis 

In contrast to a Fourier-transform analysis, a wavelet-transform analysis can be 
used to decompose a signal into frequencies that are localized in time. Thus, this 
method can be used to associate certain frequency components revealed by the power 
spectra in the previous section with particular features in the time series. 
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Farge (1992) has recently reviewed the use of wavelet transforms in fluid mechanics. 
A time series f ( t )  can be decomposed into a set of wavelet coefficients W(t,, s), where 
s is a parameter that characterizes a scale, or frequency, in the signal and to is a 
point in the time series. The magnitude of a wavelet coefficient gives a measure of the 
energy in the signal at a particular point in the time series of a particular frequency. 
A wavelet transform g(t;s), for fixed s, is chosen to have a simple structure, to be 
localized in space and scale and to have finite amplitude over a period of O(s-'). A 
commonly used wavelet is the Morlet wavelet (cf. equation (23) of Farge 1992), which 
is given by 

(3.2) g ( t ;  s) = e-(st)2/2-imst 

This wavelet is an oscillation with a Gaussian modulation and so resembles a wave 
packet. The parameter rn determines the number of oscillations present in the wavelet; 
here rn takes the value 5. For fixed s, the wavelet is translated by to and then projected 
onto the signal f ( t ) ,  giving 

- 
W(t,,s) = s1/2 / f(t)g(t - t,;s)dt, (3.3) 

J -m 

where the factor s1l2 is used to normalize the energies in each scale. The expression 
(3.3) is evaluated most efficiently by taking the Fourier transforms o f f  and g and 
performing a convolution in the frequency domain, such that 

and 

so the inverse Fourier transform gives 
h (̂w ; 3) = j(w)2(w ; s), 

W(t,;s)  = [I h(col;s)eiwrtdwl. 

(3.4) 

(3.7) 

Figure 20 shows a selection of time series measured at SZ = 1000 r.p.m. and 81 = 60" 
(each lasting one time period, but with the origin shifted by a constant amount) and 
the associated wavelet transforms plotted in (ml/Q, t /  T)-space, which is equivalent 
to (s/SZ, t/T)-space, calculated using a code provided by J. J. Healey. This value 
of 81 was chosen because the wave packet is still separated from the transitional 
flow and because the power spectra show two frequency regions with large spectral 
amplitudes at this angular position (see figure 9 4 .  The power spectra show that the 
frequency region centred on ml/Q w 10 appears at higher Reynolds numbers than 
the region centred on q/Q w 25, but at some Reynolds numbers there are sizeable 
contributions to the spectra from both frequency regions ; the wavelet transform can 
associate these frequency contributions to particular features in the time series. 

Figure 20(a) suggests that, at this Reynolds number, the wave packet is composed 
predominantly of a single convectively unstable family (branch 2) with frequencies 
centred on wl/Q w 25. In figure 20(b) at R w 319, a second family (branch 1) of 
unstable frequencies appears, centred on Ul/Q w 10 at a slightly earlier time. This 
family continues to grow in amplitude in preference to the first, which is no longer 
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FIGURE 20. Peak-normalized ensemble-averaged time series, at z = 1.3, 81 = 60" and 
SZ = 1000 r.p.m. for the excited boundary layer, and associated wavelet transforms, in which 
the peak-normalized modulus of the wavelet coefficient is plotted: (a)  R = 306, ( b )  R = 319, 
(c) R = 333, (d) R = 346, ( e )  R = 359, v) R = 413. Note that the maximum frequency of ( e )  and 
v) is half that of (a-d). 
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FIGURE 21. Ensemble-averaged time series of u for the excited boundary layer for Or = 50" and 
52 = 1000 r.p.m: (a) R = 291, ( b )  R = 305, ( c )  R = 317, ( d )  R = 331, ( e )  R = 345, v) R = 358, 
(g) R = 382, (h)  R = 408. 
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FIGURE 22. Instantaneous perturbation profiles taken from the ensemble-averaged time series 
measured at R = 317 for the excited boundary layer (figure 21 c ) :  (a )  t / T  = 0.41, ( b )  t / T  = 0.47. 

detected at R = 359. Where both families are present, the wavelet transforms show 
that both are associated with the main wave packet and that they overlap in the 
time series. The lower-frequency peak corresponds to a point in the time series in 
front of that corresponding to the higher-frequency peak, implying that the former 
component of the wave packet lies at higher values of 81 than the latter at fixed time. 

3.3.4. The axial structure of the excited disturbance jield 

Here, the structure of the wave packet through the boundary layer is described. 
Figure 21 shows sets of ensemble-averaged time series of u, each lasting one time 
period, measured at s2 = 1000 r.p.m, = 50" and a range of Reynolds numbers 
between 291 and 408. The wave packet at this 01 and these Reynolds numbers 
is well defined and separated from the transitional flow. In figure 21, the vertical 
placement of each time series is proportional to its z-position and all the plots are 
to the same scale. The perturbations decay at large z and there is only a small drift 
of the perturbations to larger t with increasing z .  At Reynolds numbers between 
about 305 and 358, and in figures 21 ( d )  and 21 (e )  particularly, there are kinks in 
the time series that are indicative of two superposed packets with different phases, 
i.e. branch-1 and branch-2 packets (see 93.3.3). At Reynolds numbers outside this 
range, the disturbances look more like single wave packets with decreasing frequency 
of oscillation with increasing Reynolds number, as the branch-1 instabilities begin to 
dominate. 

Figure 22 shows two instantaneous perturbation profiles for 81 = 50" and s2 = 

1000 r.p.m. taken from the time series measured at R = 317 at the times indicated by 
the dashed lines in figure 21 (c), i.e. at t / T  = 0.41 and t / T  = 0.47. The measured data 
points (0) have been interpolated with cubic-spline fits to produce an approximate 
curve of the perturbation profile. These profiles have a maximum amplitude of about 
1% of the local disk speed at z = 1.3 and a smaller maximum at z = 3.0. The 
maximum disturbance amplitude at 81 = 50", which occurs at R = 358, in figure 
21 cf), is about 2% of the local disk speed, which gives a similarly small degree of 
mean-flow distortion to that shown in figure 11 (b )  for the unexcited boundary-layer 
flow. 
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FIGURE 23. Profiles of v,,, for the excited boundary layer at 01 = 50" and 52 = 1000 r.p.m: 
(a)  R N 291, ( b )  R = 317, ( c )  R N 345, (d) R N 395. 

Because the instantaneous profiles change with time and with position it is difficult 
to provide a typical view; however, figure 23 characterizes the z-structure of the 
wave packet as it develops in space alone. The root-mean-square amplitudes of 
the circumferential velocity perturbations were calculated for the z-positions and 
Reynolds numbers depicted in figure 21 and example profiles of v,,, are plotted 
against z in figure 23. Again, the measured data points have been interpolated with 
cubic-spline fits to produce an approximate curve of the perturbation profile. At 
R = 291 the maximum is close to z = 1.3 but it tends towards z = 2 at higher 
Reynolds numbers. The maximum in figure 23(b) is higher in the boundary layer 
than the maxima in figure 22 (both figures correspond to the same Reynolds number 
and &), which illustrates the fact that at times other than those pictured in figure 22 
there is a variation in the height of the largest perturbations. The smaller maximum 
at z w 3.0 in figure 22 is cancelled by perturbations at other times, giving a smooth 
profile in this region in figure 23 (b). 

The maximum in the profiles develops a turning point at R w 395, and several 
more with increasing Reynolds number. The jaggedness of the profile occurs before 
the flow is transitional; therefore it is probably due to the presence of both stationary 
and travelling waves, which can be seen in figures 21 (g) and 21 (h )  where stationary 
waves, with higher frequency than the travelling waves, lie to the left of the time 
series. 

4. Conclusions 
The measured laminar circumferential and radial velocity profiles were found to 

closely match the theoretical von Karman profiles and the circumferential profiles 
resemble fully turbulent profiles by R = 615. 

A study of the unexcited boundary-layer behaviour at two different disk speeds 
shows the disturbance field generated by unavoidable fixed roughness elements. The 
small hole through the disk creates a stationary wave pattern at the higher disk speed, 
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but at the lower disk speed there does not seem to be a pattern directly attributable 
to the hole. This difference could be due to the higher Reynolds number at the 
source or increased receptivity of the boundary layer to stationary perturbations at 
the higher disk speed. At least one other source of stationary disturbances, due 
to a surface imperfection, has been identified. Nonetheless, for both disk speeds, 
the stationary disturbances have a maximum amplitude of about 3% of the local 
disk speed at R = 500, which is less than a third of the threshold root-mean- 
square amplitude predicted by Balachandar et al. (1990) for the onset of secondary 
instabilities. A comparison with time series from Wilkinson & Malik (1985), which 
do show secondary instabilities, and a study of the instantaneous mean-flow distortion 
also suggest that the assumption made in Lingwood (19954 that the linear stability of 
the flow is determined by the mean velocity profiles rather than secondary instabilities 
of modified profiles is justified. This will be true in general provided the stationary 
disturbance field is not too large. Merger of separate wave patterns with different 
phases from individual sources is characterized by a kink in the time series. 

Analysis of ensemble-averaged and single-realization time series from the unexcited 
boundary-layer flow suggests that the onset of transition occurs at a Reynolds number 
above 502 and below 514. The transitional flow retains features from the laminar flow, 
but contains turbulent bursts that become more frequent with increasing Reynolds 
number. The convective region of the flow supports two families of travelling 
convectively unstable waves. The wave packet is formed predominantly from branch- 
2 modes close to its initiation but, with increasing Reynolds number and time, 
branch-1 modes grow preferentially until they dominate any branch-2 contributions. 
This behaviour is predicted by linear-stability theory. Where both families coexist, a 
wavelet-transform analysis shows that branch-1 contributions, which have about half 
the frequency, 01,  of branch-2 modes, are centred slightly ahead of those of branch 
2, but both types of disturbance overlap and propagate together as one wave packet. 

Power spectra calculated from ensemble-averaged and single-realization time series 
from the unexcited boundary-layer flow show that the stationary disturbances have a 
spread of frequencies in the laboratory reference frame centred on about thirty times 
the disk rotation rate. This central frequency corresponds to thirty circumferential 
wavelengths in the rotating frame, which is consistent with the number of stripes 
observed in visualization experiments (e.g. Gregory et al. 1955). Above the critical 
Reynolds number for the onset of absolute instability, the power spectra from the 
excited flow (and single-realization power spectra from the unexcited flow) should 
include components due the absolute growth of certain waves but unfortunately the 
absolute frequencies coincide with the first harmonic of the stationary disturbances 
and the spectra do not show a well-defined absolute frequency ensuing close to the 
critical Reynolds number for the onset of absolute instability. 

Nonetheless, more direct evidence that the flow becomes absolutely unstable is given 
by figure 15, which shows the progression of the wave packet in the radial direction 
with increasing time. This figure shows that the radial propagation of the trailing edge 
of the wave packet tends towards zero as the packet approaches the critical Reynolds 
number for the onset of absolute instability, causing an accumulation of energy at 
this Reynolds number or radius. The well-defined structure of the wave packet 
disintegrates when it reaches this Reynolds number. Power spectra from the excited 
flow at angular positions where the wave packet has merged with the transitional 
flow (termed developed spectra here) are similar to those from the unexcited flow, 
which suggests that the final state reached by the boundary layer is the same whether 
or not travelling waves are externally excited. This characteristic is consistent with 



404 R. J. Lingwood 

an absolute instability causing the onset of transition from laminar to turbulent flow, 
because above the critical Reynolds number the absolute instability can start from 
noise to reach the same final state, determined by nonlinear effects, as the boundary 
layer into which disturbances of appropriate frequency have been artificially added, 
giving a transition Reynolds number that is insensitive to changes in the exact form 
of the disturbance environment. 
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